
 The Linux Kernel Internal The Linux Kernel Internal
Ramin Farajpour Cami

Github : @raminfp

Twitter : @MF4rr3ll

Agenda

• Linux Kernel Booting Process

• How To Make Your Own Kernel OS

• Anatomy of Linux Kernel Development

• System Call

• Kernel Security (Bugs/Vulnerability)
And Kernel Fuzzing

Who Am I?

• Cyber Security Researcher

• Bug Bounty Program

 (Google, Twitter, Yahoo, Apple, Ebay, Blackberry, etc)

• Linux Exploit Developer

• Malware Analysis

• Linux System Programmer

• Linux Kernel/Device Developer

• Windows System Programmer

• Django Contributor

Type of OS

• Personal OS : Linux, Unix, MaCOS , etc

• Mobile OS : Android, iOS, WinPhone, UIQ, etc

• Real-Time OS : VxWork (NASA), QNX, RTLinux, etc

• Network OS : Router OS, Switch OS, etc

• Distributed OS : Internet, Telephone networks

Linux Kernel

Android Device Linux Kernels Source

• Google: https://android.googlesource.com/kernel/msm/

• HTC: https://www.htcdev.com/devcenter/downloads

• OnePluseOS : https://github.com/OnePlusOSS/android_kernel_oneplus_msm8996

• Moto X : https://

github.com/MotorolaMobilityLLC/kernel-msm

• Sony : https://github.com/sonyxperiadev/kernel

https://android.googlesource.com/kernel/msm/
https://android.googlesource.com/kernel/msm/
https://www.htcdev.com/devcenter/downloads
https://www.htcdev.com/devcenter/downloads
https://www.htcdev.com/devcenter/downloads
https://github.com/OnePlusOSS/android_kernel_oneplus_msm8996
https://github.com/OnePlusOSS/android_kernel_oneplus_msm8996
https://github.com/MotorolaMobilityLLC/kernel-msm
https://github.com/MotorolaMobilityLLC/kernel-msm
https://github.com/sonyxperiadev/kernel
https://github.com/sonyxperiadev/kernel

The Linux Boot Process

The Linux Boot Process

• BIOS (Basic Input/Output System)
The processor executes code at a well-known location In a personal
computer (PC), which is stored in flash memory on the motherboard.

booting Linux begins in the BIOS at address 0xFFFF0.

When your computer boots—and after the POST finishes—the BIOS
looks for a Master Boot Record, or MBR, stored on the boot device
and uses it to launch the bootloader (GRUB).

The BIOS will soon be dead

• UEFI plans to completely replace it with UEFI on all their chipsets by 2020.

BIOS Tools

• apt-cache search bios | grep –i bios

• apt-get source phnxdeco (phonix tech)

• Security advisory (Intel):
 https://edk2-docs.gitbooks.io/security-advisory/content/

• Security Tool:
 Platform Security Assessment Framework

 https://github.com/chipsec/chipsec

• Attacking and Defending BIOS in 2015
• http://c7zero.info/stuff/AttackingAndDefendingBIOS-RECon2015.pdf

https://edk2-docs.gitbooks.io/security-advisory/content/
https://edk2-docs.gitbooks.io/security-advisory/content/
https://github.com/chipsec/chipsec
https://github.com/chipsec/chipsec
https://github.com/chipsec/chipsec
http://c7zero.info/stuff/AttackingAndDefendingBIOS-RECon2015.pdf
http://c7zero.info/stuff/AttackingAndDefendingBIOS-RECon2015.pdf

Bootkit Malware

What is bootkit?
Malware that executes before the operating system boots.

Malwares:

FIN1 : Network protocols and communication channels for command and control (C2C).

Including: file transfer (http DLL web shell), screen capture, keystroke logging, process injection

BOOTRASH :
File Content : Core.sys, vfs.sys and etc

Including : Services, Run keys, Scheduled tasks, Startup folders

Article :

https://
www.fireeye.com/blog/threat-research/2015/12/fin1-targets-boot-recor
d.html

https://www.fireeye.com/blog/threat-research/2015/12/fin1-targets-boot-record.html
https://www.fireeye.com/blog/threat-research/2015/12/fin1-targets-boot-record.html
https://www.fireeye.com/blog/threat-research/2015/12/fin1-targets-boot-record.html
https://www.fireeye.com/blog/threat-research/2015/12/fin1-targets-boot-record.html

DISKS, PARTITIONS, VOLUMES

Normal boot process windows

Hijacked boot process

What is UEFI?

• You need to buy new hardware that supports and includes UEFI.
• UEFI firmware can boot from drives of 2.2 TB or larger.

• UEFI can run in 32-bit or 64-bit mode.

• Your boot process is faster.

• UEFI screens can be slicker than BIOS settings screens, including graphics and
mouse cursor support.

• UEFI supports Secure Boot, which means the operating system can be checked
for validity to ensure no malware has tampered with the boot process.

• UEFI support networking features.

• UEFI is modular.

• Analyzing UEFI BIOSes from attacking [BH 2014] (https://
youtu.be/CGBpil0S5NI)

https://youtu.be/CGBpil0S5NI
https://youtu.be/CGBpil0S5NI
https://youtu.be/CGBpil0S5NI

UEFI

UEFI Rootkit Malware (LoJax)

• How malware works:
– Information dumping tool:
– RwDrv.sys driver, attackers reads the information on your UEFI BIOS.

This information is then saved to a text file. This step helps the
malware understand the victim system.

– System Firmware Image Creation :

– Firmware Image of SPI Flash Memory where the UEFI/BIOS is
located. This image is then again saved to a file.

– Rootkit Installation:

– The firmware image is infected. This infected Firmware image is
then installed onto the SPI Flash Memory

OS drivers dangerous for BIOS

Create malware is important for country

ICS (Industrial Control Systems) malware

• 2010 Stuxnet : This cyber weapon was created to target Iranian
centrifuges.

• 2013 Havex : Targeted energy grids, electricity firms, and many
others.

• 2015 BlackEnergy : It targeted critical infrastructure and
destroyed files stored on workstations and servers. In Ukraine.

• 2015 IronGate : It targeted Siemens control systems and had
functionalities similar to Stuxnet’s.

• 2016 Industroyer : The attack caused a second shutdown of
Ukraine’s power grid.

• 2017 Triton : The attack did not succeed

What Is BootLoader?

• It is the part that starts the system up
and loads the operating system kernel

• Bootloader has two main jobs:

• [1] Initialize the system to a basic level
(MBR) and to [2] Load the kernel.

Type Bootloder

First stage bootloader = MBR

MBR (Master Boot Record)

• MBR :
The first 446 bytes are the primary boot loader, which
contains both executable code and error message text

The next sixty-four bytes are the partition table, which
contains a record for each of four partitions The MBR
ends with two bytes that are defined as the magic
number (0xAA55)

Extracting the MBR

dd if=/dev/hda of=mbr.bin bs=512 count=1
od -xa mbr.bin

Partition table information of MBR

• # file mbr.bin

mbr.bin: x86 boot sector; partition 1: ID=0x83, active,
starthead 32, startsector 2048, 19451904 sectors;
partition 2: ID=0x5, starthead 254, startsector 19455998,
2093058 sectors, code offset 0x63

Second stage bootloader

Splash screen is commonly displayed, and Linux and an optional initial RAM

disk (temporary root file system) are loaded into memory.

second-stage, boot loader called the kernel loader. The task at this stage is to load
the Linux kernel and optional initial RAM disk.

Second stage = GRUB and etc

Type of bootloader :
1- Grub

2- LILO

3- GRand

4- …

GRUB

Good knowledge of Linux file system. Instead of using raw sectors
on the disk, as LILO.

GRUB can load a Linux kernel from an ext2 or ext3 file system

Stage 1 (MBR) + Stage 1.5 + Stage 2 (GRUB)

What is stage 1.5?

stage 1.5 boot loader that understands the particular file
system containing the Linux kernel image.

Examples :

CR-ROMs use the iso9660_stage_1_5

Ext2 or ext3 file system use the e2fs_stage1_5

GRUB *.cfg (Stage 1.5  Stage 2 loaded)

GRUB GUIDE

Refs:

https://thestarman.pcministry.com/asm/mbr/GRUB.htm

http://people.ds.cam.ac.uk/fanf2/hermes/src/grub-e1000/

https://
www.gnu.org/software/grub/manual/grub/grub.html#General-b
oot-methods
https://
github.com/coreos/grub/blob/93fb3dac4ae7a97c080d51d951d0e
5a3109aaac7/grub-core/kern/main.c

https://thestarman.pcministry.com/asm/mbr/GRUB.htm
https://thestarman.pcministry.com/asm/mbr/GRUB.htm
http://people.ds.cam.ac.uk/fanf2/hermes/src/grub-e1000/
http://people.ds.cam.ac.uk/fanf2/hermes/src/grub-e1000/
http://people.ds.cam.ac.uk/fanf2/hermes/src/grub-e1000/
https://www.gnu.org/software/grub/manual/grub/grub.html#General-boot-methods
https://www.gnu.org/software/grub/manual/grub/grub.html#General-boot-methods
https://www.gnu.org/software/grub/manual/grub/grub.html#General-boot-methods
https://github.com/coreos/grub/blob/93fb3dac4ae7a97c080d51d951d0e5a3109aaac7/grub-core/kern/main.c
https://github.com/coreos/grub/blob/93fb3dac4ae7a97c080d51d951d0e5a3109aaac7/grub-core/kern/main.c
https://github.com/coreos/grub/blob/93fb3dac4ae7a97c080d51d951d0e5a3109aaac7/grub-core/kern/main.c

Understanding the Various Grub Modules

$ ls /boot/grub/x86_64-efi/
/boot/grub/x86_64-efi/915resolution.mod

…

Grub module :

https://github.com/coreos/grub/tree/2.02-coreos/grub-core

https://github.com/coreos/grub/tree/2.02-coreos/grub-core
https://github.com/coreos/grub/tree/2.02-coreos/grub-core

Grub module error: file `/boot/grub/*/*.mod not found.

Load kernel image with GRUB

grub> kernel /bzImage-<version>

[Linux-bzImage, setup=0x1400, size=0x29672e]

grub> initrd /initrd-<version>.img

[Linux-initrd @ 0x5f13000, 0xcc199 bytes]

grub> boot
Uncompressing Linux... Ok, booting the kernel.

Refs install manual : http://tinycorelinux.net/install_manual.html

http://tinycorelinux.net/install_manual.html
http://tinycorelinux.net/install_manual.html

Count of Line Code Ubuntu Kernel

Count of Line Code Main Kernel

Kernel Boot Road Map

Underestand of Kernel Image

vmlinux: Plain linux ELF file just the way it was created by the

linker, including symbols and everything.

vmlinuz: Gzipped vmlinux file which got stripped of all its symbols

zImage: bootsect.o + setup.o + misc.o + piggy.o (piggy.o contains

the piggy-backed vmlinuz).

zImage : is bootable because it can decompress and run the kernel

it contains.

bzImage: Same as zImage except that it is built slightly differently

which enables it to carry bigger kernels.

Vmlinux to Vmlinuz (make bzImage)

Vmlinux

• Vmlinux is a ELF format,

• How to get ELF format?

• Download kernel source of https://kernel.com and
compiled, or use $ apt-get source linux

https://kernel.com/

Vmlinuz

• $ sudo file /boot/vmlinuz-4.15.0-041500rc8-generic

• /boot/vmlinuz-4.15.0-041500rc8-generic: Linux kernel
x86 boot executable bzImage, version 4.15.0-
041500rc8-generic (kernel@gloin) #201801142030
SMP Mon Jan 15 01:31:43 UTC 2018, RO-rootFS,
swap_dev 0x7, Normal VGA

Kernel Start Up

Kernel Image Process

• Kernel image (bzImage) load to Memory and kernel stage started …

• Typically zImage compressed image, less than 512KB a bzImage (big compressed image,
greater than 512KB)

• When the bzImage (for an i386 image) is invoked, you begin at ./arch/i386/boot/head.S in
the start assembly routine

• The kernel is then decompressed (./arch/i386/boot/compressed/misc.c) through a call to a
C function called decompress_kernel function

• When the kernel is decompressed into memory, it is called. This is yet another startup_32
function, but this function is in ./arch/i386/kernel/head.S.

• More info : https://www.slideshare.net/itembedded/linux-kernel-image

https://www.slideshare.net/itembedded/linux-kernel-image
https://www.slideshare.net/itembedded/linux-kernel-image

Kernel Overview

Kernel Source x86

Kernel Source ARM

Kernel Source Tree

• Github linux kernel source tree :
– https://github.com/torvalds/linux

• Bootlin kernel source tree :
– https://elixir.bootlin.com/linux/latest/source

https://github.com/torvalds/linux
https://elixir.bootlin.com/linux/latest/source
https://elixir.bootlin.com/linux/latest/source

Kernel Type Mode

• Real Mode

• Protected Mode

• Long Mode

Architecture Linux Kernel Initialization

Kernel Boot Paging (Virtual Memory)

Real Mode Kernel

Real Mode Boot sector (header.S)

Kernel Real Mode (setup_header)

Kernel Real Mode (setup_header)

Struct set_header (header.S)

Kernel Real Mode Stack (header.S)

Kernel Real Mode to C (header.S -> main.c)

Kernel Real Mode Main.c

Copy header to zeropage

Start_kernel Initialization

	Slide 1
	Agenda
	Who Am I?
	Type of OS
	Linux Kernel
	Android Device Linux Kernels Source
	The Linux Boot Process
	The Linux Boot Process
	The BIOS will soon be dead
	BIOS Tools
	Bootkit Malware
	DISKS, PARTITIONS, VOLUMES
	Normal boot process windows
	Hijacked boot process
	What is UEFI?
	UEFI
	UEFI Rootkit Malware (LoJax)
	OS drivers dangerous for BIOS
	Create malware is important for country
	ICS (Industrial Control Systems) malware
	What Is BootLoader?
	Type Bootloder
	First stage bootloader = MBR
	MBR (Master Boot Record)
	Extracting the MBR
	Partition table information of MBR
	Second stage bootloader
	Second stage = GRUB and etc
	GRUB
	Stage 1 (MBR) + Stage 1.5 + Stage 2 (GRUB)
	GRUB *.cfg (Stage 1.5  Stage 2 loaded)
	GRUB GUIDE
	Understanding the Various Grub Modules
	Grub module error: file `/boot/grub/*/*.mod not found.
	Load kernel image with GRUB
	Slide 36
	Count of Line Code Ubuntu Kernel
	Count of Line Code Main Kernel
	Kernel Boot Road Map
	Underestand of Kernel Image
	Vmlinux to Vmlinuz (make bzImage)
	Vmlinux
	Vmlinuz
	Kernel Start Up
	Kernel Image Process
	Kernel Overview
	Kernel Source x86
	Kernel Source ARM
	Kernel Source Tree
	Kernel Type Mode
	Architecture Linux Kernel Initialization
	Kernel Boot Paging (Virtual Memory)
	Real Mode Kernel
	Real Mode Boot sector (header.S)
	Kernel Real Mode (setup_header)
	Kernel Real Mode (setup_header)
	Struct set_header (header.S)
	Kernel Real Mode Stack (header.S)
	Kernel Real Mode to C (header.S -> main.c)
	Kernel Real Mode Main.c
	Copy header to zeropage
	Start_kernel Initialization

