HOMEVIDEOSCOURSESSTUDENTSSPONSORSDONATIONSEVENTSTUTORIALSLINKSNEWSCONTACT


TUTORIALS 》 Linux Kernel Driver Device Trees

The Linux kernel is the backbone of the Linux operating system, and it is responsible for managing the communication between the hardware and software on a system. One of the key components of the Linux kernel is the device tree, which is a data structure used to describe the hardware components of a system.

A device tree is a hierarchical tree structure that describes the various devices that are present in a system, including their properties and relationships to one another. The device tree is used by the Linux kernel to identify and initialize the different devices on a system, and to provide a consistent interface for interacting with them.

One of the key advantages of using a device tree is that it allows the Linux kernel to support a wide range of different hardware platforms without having to hard-code specific drivers for each one. Instead, the device tree provides a generic interface that can be used to interact with any device, regardless of its specific hardware characteristics.

The device tree is also used to define the relationship between different devices in a system. For example, a device tree might specify that a particular device is a child of another device, or that it is connected to a particular bus or interface. This information is used by the Linux kernel to determine how to communicate with the different devices in a system, and to ensure that they are properly configured and initialized.

Linux kernel driver device trees are typically created and maintained by the kernel developers, but they can also be modified and customized by users to support specific hardware configurations. This can be useful for customizing the behavior of a system, or for adding support for new devices that are not yet supported by the Linux kernel.

In summary, device trees are an integral part of the Linux kernel, and are responsible for describing the hardware components of a system, and for providing a consistent interface for interacting with them. They allow the Linux kernel to support a wide range of different hardware platforms without having to hard-code specific drivers for each one, and make it easier to customize the behavior of a system to meet specific needs.

I also conduct sessions/classes on Systems and Network software programming and architecture. If you are interested, click HERE for more details.

Also recommend to watch:


Featured Video:



Suggested Topics:


☆ Tutorials :: Arduino UNO Projects ↗


☆ Tutorials :: Network Software Development ↗


☆ Tutorials :: Research and Projects ↗


☆ Tutorials :: Linux (user-space), Systems Architecture ↗


☆ Tutorials :: Linux Kernel Software Development ↗


☆ Tutorials :: Linux Kernel Internals (PDFs) - by Ramin Farajpour ↗


☆ Tutorials :: Software Development (Programming) Tools ↗


☆ Tutorials :: Embedded Projects ↗

Join The Linux Channel :: Facebook Group ↗

Visit The Linux Channel :: on Youtube ↗


💗 Help shape the future: Sponsor/Donate


Recommended Topics:
Featured Video:
Watch on Youtube - [440//0] 328 Network Latency and Bandwidth Assessment - for Network Admins and Infrastructure Architects ↗

What is purpose of Kernel Development - Example SMOAD Networks SDWAN Orchestrator Firewall Kernel Engine ↗
Monday' 18-Jul-2022
Often aspiring students may have this question, that what is the purpose of Linux Kernel Development. Since Linux Kernel is very mature and it has almost everything one would need. Usually, we need custom kernel development in the case of any new driver development for new upcoming hardware. And this happens on and on. But at times we may also come across few features/modules/components which are already provided by the Linux Kernel which are not adequate or atleast not the way we exactly intended to use. So, this is the real-world example, sometimes no matter what Linux Kernel provides as a part of stock Kernel/OS features, sometimes we have to write our own custom kernel stack or module(s) which can specifically cater our exact needs.

Roadmap - How to become Systems Software Developer ↗
Friday' 13-May-2022
When you are at the beginning of your career or a student, and aspire to become a software developer, one of the avenues to choose is to become a hard-core Systems Software Developer. However it is easier said than done, since there are many aspects to it as you explore further. As a part of systems developer, you can get into core kernel space developer, kernel device drivers developer, embedded developer and get into things like board bring-up, porting, etc, or can become a user-space systems programmer, and so on. So here is my detailed multi-episode Youtube video series on Roadmap - How to become Systems Software Developer.

The Linux Channel :: Sponsors ↗
Monday' 30-May-2022
Here is a list of all The Linux Channel sponsors/donors (individual/companies).

Linux Kernel vs User-space - Library APIs - Linux Kernel Programming ↗
Tuesday' 17-Jan-2023
One of the important aspects a beginner who is into Linux Kernel space systems software development has to understand is that unlike user-space C/C++ programming, where you can freely include any library APIs via respective #include files (which are dynamically linked during run-time via those /lib .so files), in the case of Kernel space programming, these library APIs are written within the Kernel source itself. These are the fundamental APIs which we commonly use, such as memcpy(), memcmp(), strlen(), strcpy(), strcpy() and so on. So here is my detailed Youtube video episode on the same with live demo, walk-through and examples.

Linux Kernel Driver Device Trees ↗
Tuesday' 17-Jan-2023
The Linux kernel is the backbone of the Linux operating system. A device tree is a hierarchical tree structure that describes the various devices that are present in a system, including their properties and relationships to one another. The device tree is used by the Linux kernel to identify and initialize the different devices on a system, and to provide a consistent interface for interacting with them.

Linux Kernel /sysfs Interface ↗
Saturday' 14-May-2022
/sysfs is one of the most popular kernel to user-space interface which you can leverage to add an interface to your Kernel code such as Kernel modules, Kernel Device Drivers, etc. Although personally I prefer /proc interface than other alternatives such as /sysfs, ioctl() and so on for my personal Kernel modules/stack. So here is my detailed multi-episode Youtube video series on /sysfs Interface.

Rockchip ROC-RK3566-PC from Firefly | OpenWRT ↗
Monday' 23-Jan-2023
Here is my multi-episode video series on evaluation of Rockchip ROC-RK3566-PC from Firefly with stock OpenWRT firmware.

Support, Donate and Contribute - The Linux Channel ↗
Saturday' 13-Mar-2021
Help shape the future and make an impact by donating/sponsor The Linux Channel. Your donation will transform lives !

Research Socket overhead in Linux vs Message Queues and benchmarking ↗
Saturday' 13-Mar-2021

Linux Kernel Data-Structures ↗
Saturday' 13-Mar-2021
Here is a quick reference of important Linux Kernel Data Structures of various assorted Kernel Subsystems such as: Process, Memory Management, Networking, File System, Device Drives, IPC and so on. So when you write custom Kernel code, it is often you may need to populate a new instance of one of these data-structures or just access the existing ones. Hence it is very important to know some of these and get familiarized with. You can bookmark this page, so that you can use this as a quick reference when you write your own custom Linux Kernel Modules.


Trending Video:
Watch on Youtube - [265//0] x25e Device Config Metadata | Product Architecture | Ubuntu FreeBSD OpenWRT Sqlite3 MySQL RRDtool ↗

Arduino UNO - RO Water Purifier Controller ↗
Saturday' 13-Mar-2021
Here is a Youtube VLOG of my DIY RO Water Purifier Controller done via Arduino UNO. I want the Arduino UNO to control the RO pump, so that it pumps for a specific duration and stops automatically. This is done via Opto-isolated 4 Channel 5V 10A Relay Board meant for Arduino UNO, Raspberry Pi or similar SoC boards which offers GPIO pins. To this relay I have connected the RO water purifier booster pump which works at 24V DC connected via 220V AC to 24V DC power supply adaptar. I have also connected a small active 5V buzzer to notify the progress and completion as it fills the tank/canister.



Recommended Video:
Watch on Youtube - [460//0] 0x175 pfSense VM Router of my Virtual Lab || Tour of my Virtual Lab ↗